Ranu carries water to school in a cylindrical flask with diameter 12 cm and height 21 cm. Determine the amount of water that she can carry in the flask. (use \( \pi = \frac{22}{7} \))
If secθ + tanθ = 5, (θ ≠ 0), then secθ is equal to:
\((5 + \dfrac{1}{5})\)
\(\dfrac{1}{2}(3 + \dfrac{1}{3})\)
\(\dfrac{1}{2}(5 + \dfrac{1}{5})\)
\((3 + \dfrac{1}{3})\)
To do a certain work, Ajay and Bharat work on alternate days, with Bharat starting the work on the first day. Ajay can finish the work alone in 32 days. If the work gets completed in exactly 8 days, then Bharat alone can finish 7 times the same work in__________days
if sec θ + cos θ = 32, then sec²θ + cos²θ is _____________
A, B and C can separately complete a work in 12, 15 and 20 days, respectively. They worked together 4 days. What will be the remaining work?
\( \frac{1}{2} \)
\( \frac{1}{5} \)
\( \frac{1}{6} \)
\( \frac{1}{8} \)
If x > 0, and x4 + \( \frac{1}{x^{4}} \) = 254, what is the value of x5 + \( \frac{1}{x^{5}} \)?
717\(\sqrt{2}\)
723\(\sqrt{2}\)
720\(\sqrt{2}\)
726\(\sqrt{2}\)
A shopkeeper gains 20% in place of 16% loss if the selling price of an article is increased by ₹324. The cost price of the article is: